Help! Please Register

  Laboratory

  Introduction
  Susceptibility
  MIC Database
  Procedures
  Histopathology


  The Fungi

  Introduction
  Descriptions
  Synonyms
  Image Bank
  Lecture Bank
  Video Bank


  Mycoses

  Introduction
  Human
  Veterinary
  Environmental
  Industrial
  Agricultural


  Drugs

  Introduction
  Medical
  Veterinary
  Environmental
  Industrial
  Agricultural


  Education &
  Tools

  Introduction
  Abbreviations
  Links
  CME
  Conference
  Highlights
  Bibliography
  Glossary
  Good Books
  Events
  Calendar


  About Us

  Introduction
  Our Mission
  Editorial Board
  Editorial Staff
  Supporters
  Contributors
  Legal Stuff
  Privacy Policy
  Kudos



This page updated:
1/27/2007 9:23:00 AM


DoctorFungus - All Rights Reserved © 2007 Copyright
& Privacy Policy


Site built and designed for doctorfungus by Webillustrated



You are here: Laboratory >
Navigate this section from here:


Usual Susceptibility Patterns for Candida spp.


Overview

Although individual isolates of any given species may become resistant to any agent, there are some broad patterns that are useful to know. Here are the patterns for the six most common Candida species. As can be seen, knowledge of the species of the isolate is almost as useful as having an actual measured MIC. For more details on both the utility and limitations of susceptibility testing, please review the paper in which many of these interpretive categories were first proposed [1910].

  Polyenes Azoles Other
Species AmB Fluco Itra Keto 5-FC
C. albicans S S S S S
C. tropicalis S S S S S
C. parapsilosis S S S S S
C. glabrata I S-DD S-DD   S
C. krusei I R S-DD to R   I-R
C. lusitaniae R S S-DD   R


  • S = Susceptible to usual doses of this agent
  • S-DD = Susceptibility depends on the dose (fluconazole) or delivery (itraconazole) of the drug. Maximal tolerated doses must be used and blood levels may need to be checked.
  • I = Indeterminate or Intermediate. This category reflects a general lack of certainty about the meaning of this MIC.
  • R = Resistant to usual doses of this agent
For additional data, go to the Susceptibility Database

Details

Many studies of the in vitro antifungal susceptibility profile of Candida isolates for commonly used antifungal agents are available. The NCCLS M27A microdilution methodology [1623] is currently used for performance and interpretation of the susceptibility tests.

In Vitro Susceptibility
  • Amphotericin B and other polyenes
    NCCLS method is yet insufficient in discrimination of amphotericin B-resistant isolates from the susceptible ones, primarily due to the narrow range of MICs that it generates for all test strains. Modifications of this method, such as the use of Antibiotic Medium 3 supplemented to 2% glucose (AM3) instead of the reference RPMI 1640 medium, and use of 24 h incubation instead of the standard 48 h readings, have yielded inconsistent results in various investigators' hands [1378, 1379, 1639, 1905]. While efforts to develop a novel relevant methodology for amphotericin B susceptibility testing are in progress, amphotericin B has proven to be fungicidal against Candida strains [65]. Liposomal nystatin appeared active in vitro against some of the isolates with relatively high amphotericin B MICs [118].

  • Azoles and Allylamines
    In vitro resistance to azoles is observed in various Candida spp. While Candida krusei is intrinsically resistant to fluconazole, Candida glabrata may be susceptible, dose-dependent susceptible, or resistant [125]. Other species, such as Candida inconspicua and Candida tropicalis may also generate high fluconazole MICs [180]. In systemic infections, fluconazole-resistant Candida albicans isolates are rare but do exist [281]. On the other hand, patients with AIDS receiving fluconazole prophylaxis are particularly under risk to develop infections due to fluconazole-resistant Candida albicans [185]. Genetic mechanisms involved in multidrug resistance of Candida albicans have recently been explored [40]. Multidrug efflux pumps have been shown to be involved in fluconazole resistance in Candida albicans and Candida tropicalis [42, 180]. Mutation in sterol 14-demethylase P450 enzyme may also lead to azole resistance [134].

    The most striking feature of itraconazole is its favorable in vitro activity against some of the fluconazole-resistant Candida strains [182, 2275]. This property, as well as the availability of its parenteral formulation, now makes itraconazole a good candidate for treatment of systemic Candida infections. However, there is definitely cross-resistance between fluconazole and itraconazole remains relevant for a subset of Candida isolates, such as some Candida glabrata strains [183]. Terbinafine, in combination with fluconazole and itraconazole may also yield enhanced in vitro activity against some azole-resistant Candida albicans strains [184]. Candida lipolytica and Candida pelliculosa, on the other hand, generate high itraconazole MICs in general [189].

    The novel triazoles have favorable in vitro activity against most Candida spp. Although voriconazole MICs are relatively high against Candida guilliermondii and Candida krusei, a recent animal study of therapy of C. krusei infections suggested good activity [835]. Posaconazole (SCH56592) MICs in general appear low [179].

  • Flucytosine
    While flucytosine is effective [225] but now less commonly used against Candida infections, strains which are primarily resistant to flucytosine [177] or develop resistance during therapy have been identified.

  • Glucan Synthesis Inhibitors (Echinocandins)
    In vitro data obtained so far against Candida for these novel agents are promising. Agents of this class are active and often appear fungicidal against both fluconazole-resistant and -susceptible isolates [188]. Isolates of Candida parapsilosis consistently have elevated MICs, but the relevance of this is unclear[1535, 2276].

For additional data, go to the Susceptibility Database

In Vivo Efficacy

Amphotericin B, fluconazole, and itraconazole in general show favorable activity in vivo in treatment of Candida infections [21, 35, 44, 51, 52, 257]. Itraconazole alone, as well as itraconazole and flucytosine combination, proved to have good long term therapeutic efficacy in esophageal candidiasis in AIDS patients [171, 173]. Importantly and in general, improvement of unfavorable immune factors constitutes the major issue in successful clinical outcome of Candida infections. Removal of the predisposing medical devices, such as catheters or shunts are frequently required for clinical cure [78]. Nevertheless, failure despite appropriate therapy with the agent that appears active in vitro, such as amphotericin B or fluconazole, may be observed [25, 130]. Ketoconazole is now less commonly used in treatment of Candida infections due to the availability of more efficacious and less toxic azole compounds [169].

The echinocandins in development, caspofungin and FK463 appear promising in treatment of oropharyngeal and esophageal candidiasis [111, 1771, 1995].

Although use of fluconazole might be beneficial for secondary prophylaxis in patients with AIDS who have recovered from the primary attack of esophageal candidiasis [20], the potential risk of emergence of fluconazole resistance [194] or appearance of candidiasis due to fluconazole-resistant species remains. Similarly, fluconazole prophylaxis following bone marrow transplantation has limited activity against some non-albicans Candida spp. and no activity against filamentous fungi [128, 280].






References

20. Agresti, M. G., F. de Bernardis, F. Mondello, R. Bellocco, G. P. Carosi, R. M. Caputo, F. Milazzo, F. Chiodo, V. Giannini, L. Minoli, and et al. 1994. Clinical and mycological evaluation of fluconazole in the secondary prophylaxis of esophageal candidiasis in AIDS patients. An open, multicenter study. Eur. J. Epidemiol. 10:17-22.

21. Aguado, J. M., M. Hidalgo, and J. L. Ridriguez-Tudela. 1994. Successful treatment of Candida peritonitis with fluconazole. J. Antimicrob. Chemother. 34:847.

25. Agustin, J., S. Lacson, J. Raffalli, M. E. Aguero-Rosenfeld, and G. P. Wormser. 1999. Failure of a lipid amphotericin B preparation to eradicate candiduria: preliminary findings based on three cases. Clin Infect Dis. 29:686-7.

35. Akler, M. E., H. Vellend, D. M. McNeely, S. L. Walmsley, and W. L. Gold. 1995. Use of fluconazole in the treatment of candidal endophthalmits. Clin. Infect. Dis. 20:657-664.

40. Alarco, A. M., and M. Raymond. 1999. The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans. J Bacteriol. 181:700-708.

42. Albertson, G. D., M. Niimi, R. D. Cannon, and H. F. Jenkinson. 1996. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob. Agents Chemother. 40:2835-2841.

44. Alden, S. M., E. Frank, and L. Flancbaum. 1989. Abdominal candidiasis in surgical patients. Amer. Surg. 55:45-9.

51. Almekinders, L. C., and W. B. Greene. 1991. Vertebral Candida infections. A case report and review of the literature. Clin. Orthop. Related Res. 267:174-178.

52. Aloia, T., J. Solomkin, A. S. Fink, M. S. Nussbaum, S. Bjornson, R. H. Bell, L. Sewak, and D. W. McFadden. 1994. Candida in pancreatic infection: a clinical experience. Amer. Surg. 60:793-6.

65. Anaissie, E., V. Paetznick, R. Proffitt, M. J. Adler, and G. P. Bodey. 1991. Comparison of the in vitro antifungal activity of free and liposome-encapsulated amphotericin B. Eur. J. Clin. Microbiol. Infect. Dis. 10:665-668.

78. Angel-Moreno, A., A. Frances, J. M. Granado, and J. L. Perez-Arellano. 2000. Ventriculoperitoneal shunt infection by Candida glabrata in an adult. J Infection. 41:178-179.

111. Arathoon, E. G., E. Gotuzzo, L. M. Noriega, R. S. Berman, M. J. DiNubile, and C. A. Sable. 2002. Randomized, double-blind, multicenter study of caspofungin versus amphotericin B for treatment of oropharyngeal and esophageal candidiasis. Antimicrob. Agents Chemother. 46:451-457.

118. Arikan, S., M. Lozano-Chiu, V. Paetznick, D. Gordon, T. Wallace, and J. H. Rex. 1998. In vitro activity of liposomal nystatin compared with amphotericin B and fluconazole against clinical Candida isolates. 98th General Meeting of the American Society for Microbiology, Abstract No.

125. Arilla, M. C., J. L. Carbonero, J. Schneider, P. Regulez, G. Quindos, J. Ponton, and R. Cisterna. 1992. Vulvovaginal candidiasis refractory to treatment with fluconazole. Eur. J. Obstet. Gynecol. Reprod. Biol. 44:77-80.

128. Arning, M., and C. Aul. 1994. [Prophylaxis against mycoses in neutropenic patients]. Mycoses. 37:70-6.

130. Arranz-Caso, J. A., V. M. Lopez-Pizarro, P. Gomez-Herruz, J. Garcia-Altozano, and J. Martinez-Martinez. 1996. Candida albicans osteomyelitis of the zygomatic bone. A distinctive case with a possible peculiar mechanism of infection and therapeutic failure with fluconazole. Diagn. Microbiol. Infect. Dis. 24:161-164.

134. Asai, K., N. Tsuchimori, K. Okonogi, J. R. Perfect, O. Gotoh, and Y. Yoshida. 1999. Formation of azole-resistant Candida albicans by mutation of sterol 14-demethylase P450. Antimicrob. Agents Chemother. 43:1163-1169.

169. Bannatyne, R. M., and H. M. Clarke. 1989. Ketoconazole in the treatment of osteomyelitis due to Candida albicans. Can. J. Surg. 32:201-202.

171. Barbaro, G., G. Barbarini, W. Calderon, B. Grisorio, P. Alcini, and G. Di Lorenzo. 1996. Fluconazole versus itraconazole for Candida esophagitis in acquired immunodeficiency syndrome. Candida esophagitis. Gastroenterology. 111:1169-1177.

173. Barbaro, G., G. Barbarini, and G. Di Lorenzo. 1996. Fluconazole vs itraconazole-flucytosine association in the treatment of esophageal candidiasis in AIDS patients. A double-blind, multicenter placebo-controlled study. The Candida Esophagitis Multicenter Italian Study (CEMIS) Group. Chest. 110:1507-1514.

177. Barchiesi, F., D. Arzeni, F. Caselli, and G. Scalise. 2000. Primary resistance to flucytosine among clinical isolates of Candida spp. J Antimicrob Chemother. 45:408-409.

179. Barchiesi, F., D. Arzeni, A. W. Fothergill, L. F. Di Francesco, F. Caselli, M. G. Rinaldi, and G. Scalise. 2000. In vitro activities of the new antifungal triazole SCH 56592 against common and emerging yeast pathogens. Antimicrob. Agents Chemother. 44:226-229.

180. Barchiesi, F., D. Calabrese, D. Sanglard, L. F. Di Francesco, F. Caselli, D. Giannini, A. Giacometti, S. Gavaudan, and G. Scalise. 2000. Experimental induction of fluconazole resistance in Candida tropicalis ATCC 750. Antimicrob. Agents Chemother. 44:1578-1584.

182. Barchiesi, F., A. L. Colombo, D. A. McGough, A. W. Fothergill, and M. G. Rinaldi. 1994. In vitro activity of itraconazole against fluconazole-susceptible and -resistant Candida albicans isolates from oral cavities of patients infected with human immunodeficiency virus. Antimicrob. Agents Chemother. 38:1530-1533.

183. Barchiesi, F., L. F. Di Francesco, D. Arzeni, F. Caselli, D. Gallo, and G. Scalise. 1999. Electrophoretic karyotyping and triazole susceptibility of Candida glabrata clinical isolates. Eur. J. Clin. Microbiol. Infect. Dis. 18:184-187.

184. Barchiesi, F., L. F. Di Francesco, and G. Scalise. 1997. In vitro activities of terbinafine in combination with fluconazole and itraconazole against isolates of Candida albicans with reduced susceptibility to azoles. Antimicrob. Agents Chemother. 41:1812-1814.

185. Barchiesi, F., R. J. Hollis, M. Del Poeta, D. A. McGough, G. Scalise, M. G. Rinaldi, and M. A. Pfaller. 1995. Transmission of fluconazole-resistant Candida albicans between patients with AIDS and oropharyngeal candidiasis documented by pulsed-field gel electrophoresis. Clin. Infect. Dis. 21:561-564.

188. Barchiesi, F., A. M. Schimizzi, A. W. Fothergill, G. Scalise, and M. G. Rinaldi. 1999. In vitro activity of the new echinocandin antifungal, MK-0991, against common and uncommon clinical isolates of Candida species. Eur. J. Clin. Microbiol. Infect. Dis. 18:302-304.

189. Barchiesi, F., A. M. Tortorano, L. F. Di Francesco, M. Cogliati, G. Scalise, and M. A. Viviani. 1999. In-vitro activity of five antifungal agents against uncommon clinical isolates of Candida spp. J Antimicrob Chemother. 43:295-299.

194. Bart-Delabesse, E., P. Boiron, A. Carlotti, and B. Dupont. 1993. Candida albicans genotyping in studies with patients with AIDS developing resistance to fluconazole. J. Clin. Microbiol. 31:2933-2937.

225. Berant, M., C. Kristal, and Y. Wagner. 1979. Candida osteomyelitis as a complication of parenteral nutrition in an infant. Successful treatment with flucytosine. Helvetica Paediatrica Acta. 34:155-60.

257. Blatchford, N. R. 1990. Treatment of oral candidosis with itraconazole: a review. J. Amer. Acad. Dermatol. 23:565-567.

280. Bohme, A., M. Karthaus, and D. Hoelzer. 1999. Antifungal prophylaxis in neutropenic patients with hematologic malignancies: Is there a real benefit? Chemotherapy. 45:224-232.

281. Boken, D. J., S. Swindells, and M. G. Rinaldi. 1993. Fluconazole-resistant Candida albicans. Clin. Infect. Dis. 17:1018-1021.

835. Ghannoum, M. A., I. Okogbule-Wonodi, N. Bhat, and H. Sanati. 1999. Antifungal activity of voriconazole (UK-109,496), fluconazole and amphotericin B against hematogenous Candida krusei infection in neutropenic guinea pig model. J Chemotherapy. 11:34-39.

1378. Lozano-Chiu, M., S. Arikan, F. M. Martin-Diez, V. Paetznick, J. L. Rodriguez-Tudela, and J. H. Rex. 1998. Reliability of Antibiotic Medium 3 (AM3) agar and E-test for detection of amphotericin B (amB)-resistant isolates of Candida spp.: Results of a collaborative two-center study. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, Abstract No.

1379. Lozano-Chiu, M., S. Arikan, F. M. Martin-Diez, V. Paetznick, J. L. Rodriguez-Tudela, and J. H. Rex. 1998. A two-center study of Antibiotic Medium 3 (AM3) broth for detection of amphotericin B (amB)-resistant isolates of Candida species (CAND) and Cryptococcus neoformans (CNEO). 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, Abstract No.

1535. Mikamo, H., Y. Sato, and T. Tamaya. 2000. In vitro antifungal activity of FK463, a new water-soluble echinocandin-like lipopeptide. J Antimicrob Chemother. 46:485-487.

1623. National Committee for Clinical Laboratory Standards. 1997. Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard NCCLS document M27-A. National Committee for Clinical Laboratory Standards, Wayne, Pa.

1639. Nguyen, M. H., C. J. Clancy, V. L. Yu, Y. V. Yu, A. J. Morris, D. R. Snydman, D. A. Sutton, and M. G. Rinaldi. 1998. Do in vitro susceptibility data predict the microbiologic response to amphotericin B? Results of a prospective study of patients with Candida fungemia. J. Infect. Dis. 177:425-430.

1771. Pettengell, K., J. Mynhardt, T. Kluyts, A. Simjee, and E. Baraldi. 2000. A multicenter study of the echinocandin antifungal FK463 for the treatment of esophageal candidiasis in HIV positive patients. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Abstract No. J-1104.

1905. Rex, J. H., C. R. Cooper, Jr., W. G. Merz, J. N. Galgiani, and E. J. Anaissie. 1995. Detection of amphotericin B-resistant Candida isolates in a broth-based system. Antimicrob. Agents Chemother. 39:906-909.

1910. Rex, J. H., M. A. Pfaller, J. N. Galgiani, M. S. Bartlett, A. Espinel-Ingroff, M. A. Ghannoum, M. Lancaster, F. C. Odds, M. G. Rinaldi, T. J. Walsh, A. L. Barry, and Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical Laboratory Standards. 1997. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and Candida infections. Clin. Infect. Dis. 24:235-247.

1995. Sable, C. A., A. Villanueva, E. Arathon, E. Gotuzzo, G. Turcato, D. Uip, L. Nriega, C. Rivera, E. Rojas, V. Taylor, R. Berman, G. B. Calandra, and J. Chodakewitz. 1997. A randomized, double-blind, multicenter trial of MK-991 (L-743,872) vs. amphotericin B in the treatment of Candida esophagitis in adults. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy, Abstract No. LB-33.

2275. Uzun, O., S. Arikan, S. Kocagoz, B. Sancak, and S. Unal. 2000. Susceptibility testing of voriconazole, fluconazole, itraconazole and amphotericin B against yeast isolates in a Turkish University Hospital and effect of time of reading. Diagn Microbiol Infect Dis. 38:101-107.

2276. Uzun, O., S. Kocagoz, Y. Cetinkaya, S. Arikan, and S. Unal. 1997. In vitro activity of a new echinocandin, LY303366, compared with those of amphotericin B and fluconazole against clinical yeast isolates. Antimicrob. Agents Chemother. 41:1156-1157.



  Home | Image Bank | Lecture Bank | Knowledgebase | Site Map | Contact Us |
The Fungi | Mycoses | Drugs |
Laboratory | Education & Tools | About Us

  Triazole Thearpy CME